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A new method for identification of fish vocalizations based on auditory analysis and support vector
machine (SVM) classification is presented. In this method, high resolution features have been extracted
from fish vocalization data using the amplitude modulation spectrogram (AMS) of the input signals to
facilitate the identification of grunts and growls made by a highly vocal wild fish, Porichthys notatus.
The comparison results made from ocean audio recordings verify the effectiveness of the proposed
method in identifying various types of fish vocalizations. The relationships between signal-to-noise ratio
(SNR) and ocean temperature with the accuracy of the proposed method have also been quantified.
Moreover, a context-aware prediction algorithm is introduced for estimating the continuous data.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Acoustic communication is an important component of intra
and inter-specific interactions among many species of fish [1]. Fish
produce sound in agonistic situations [2–4], courtship and repro-
duction events [5–8], and unintentionally during other behaviours
[9]. These sounds can range from barely audible to the human ear
[10] to loud enough to disturb the sleep of nearby residents [11].
To date, over 800 species are known to make sound and many
more are believed to do so [12,13].

Passive acoustics allows a non-destructive way to gain insights
on spawning locations, fish abundance, and temporal aspects
[12,14]. However, it also relies on the basic recognition of fish
sounds, the majority of which to date, have not yet been identified
[12]. What’s more, once sounds have been identified, sifting
through extensive audio datasets can manually become a long
and tedious process [15,16]. Manual detections can be too time
consuming and error-prone (e.g., due to bias or observer fatigue)
to yield accurate results over long datasets [17]. Applying machine
learning and automated approaches to long acoustic datasets
therefore would further this field markedly.

Here we focus on the plainfin midshipman (Porichthys notatus),
a highly vocal species of toadfish found along the northeast Pacific
[18]. This fish makes four distinct vocalizations: the hum,
growl, grunt, and grunt train [5]. Grunts and growls are used in
antagonistic encounters with conspecifies, while the hum is pro-
duced during reproductive months by alpha males trying to attract
females to mate [5,19]. Compared with other species, these fish are
fairly well understood, and their call characteristics, well docu-
mented [20]. However, an automated approach to quantify and
identify their sounds in natural habitats and over long time frames
has never been created. Such a tool could offer ecological insights
on P. notatus populations including abundance, habitat location
and range, migratory patterns and call diversity in situ.

Traditionally, the identification of animal vocalizations has been
done by manually analyzing large recorded datasets [16]. But
machine-based algorithms offer a more efficient and potentially
effective way to filter through long term acoustic data sets
[21–23]. For example, in [15], an identification scheme has been
presented for different Orthoptera species by using temporal
information such as duration between zero-crossings, shape of the
waveform and artificial neural network based multilayer percep-
tron classifier. Similarly, a complicated method for identification
of humpback whales has been introduced in [24] by detecting
frequency contour and optimizing multiple parameters. Other
identification approaches have been proposed based on frequency-
domain information, such as the spectrogram correlation based
template matching scheme [16], Kalman filter based contour-
tracking scheme [25], contour features based scheme [26], and
contour signature based scheme [27]. However, in our study, as
the characterizing features of P. notatus’ grunt and growl signals
both fall in the lower frequency range (�100 Hz), and both sounds
are of very short duration, a higher resolution temporal–spectral
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signal representation is therefore desired for accurate identifica-
tion. In many species of toadfish including P. notatus, call frequency
is correlated with water temperature [28–31]. Therefore, knowing
water temperature can help to predict dominant call frequencies
and can thus become a useful parameter in automatic auditory
identification schemes.

In this paper, we propose a fish sound identification scheme
based on auditory analysis using amplitude modulation spectro-
gram (AMS). The information containing amplitude modulations
of the input signal is analyzed and represented in two-
dimensional AMS. The extraction of high-resolution features is
performedwhich ismotivatedby the results fromaneurophysiolog-
ical experiment on periodicity coding in the auditory cortex [32]. A
support vector machine (SVM) classifier is then trained on a large
number of pre-selected AMS patterns, and classifies the input sig-
nals into grunt and growl classes. It is worth mentioning that the
high-resolution features extract the subtle and detailed information
and contain more distinctive information than low-resolution
features.
Fig. 1. The overall flowchart of the proposed scheme.
2. Method

The proposed identification scheme for fish vocalizations is
based on auditory analysis for feature extraction followed by a
machine learning algorithm for classification. The overall flowchart
of our method is shown in Fig. 1. The hydrophone recordings of fish
data are partitioned first into blocks of particular segments. Each
1D data block is then converted into a 2D feature map. A high-
resolution feature set (descriptors) is then constructed from the
feature maps and used as input to the SVM classifier.

2.1. Data preprocessing

For each of the five days that were analyzed here, five minutes
of each hour of a 24-h cycle were processed manually by identify-
ing grunts and growls, thus forming 24 five-minute clips per day.
Each five minute spectrogram was then examined manually (visu-
ally and audibly) using Audacity 2.0.6 [33] by an expert, who
recorded all start and end time stamps (in seconds) for each vocal-
ization. Based on the time stamps of the annotated data, all grunt
and growl segments were then extracted, resampled (from
44,100 Hz to 16,000 Hz) and resized into N-sample data blocks
(N = 8192 here, referring to � 0:5 s) followed by time windowing
using N-sample Hamming windows [34]. It should be noted that
resampling is usually done to reduce the computational complex-
ity of the method, by running it on a signal sampled at a lower rate.
Resizing, meanwhile, is done to save memory by compressing the
signal without changing its spectral content [35].

2.2. Feature extraction

We have proposed a high-resolution descriptor (i.e., feature set)
for the identification of fish species from their vocalizations. Each
input fish data block is first bandpass filtered into 25 subbands
by a mel-frequency bank [36]. The envelope of each subband is
then obtained by using full-wave rectification followed by decima-
tion with a factor of 3. The decimated envelope signals are subse-
quently partitioned into segments of 128 samples (0.572 ms) using
50% overlapping, Hamming window. The 256-point fast Fourier
transform (FFT) of the zero-padded segments is then calculated.
The FFT computes the modulation spectrum in each subband with
a frequency resolution of 15.6 Hz. For each subband, the FFT mag-
nitudes are multiplied by 15 uniformly spaced triangular-shaped
windows across the 15.6–400 Hz range and summed up to gener-
ate 15 modulation spectrum amplitudes representing AMS feature
matrix Slðn;mÞ, where n; m and l indicate the time index, modula-
tion index, and subband/channel index, respectively, with
1 6 fn;m; lg 6 fN;M; Lg. Then, as shown in Fig. 2, the proposed
high-resolution descriptor, d of size ð1�MLÞ is constructed as
follows:

d ¼ ½K1ðmÞ;K2ðmÞ; . . . ;KLðmÞ�; ð1Þ
where

KlðmÞ ¼ 1
N

XN
n¼1

Slðn;mÞ ð2Þ

Here, we set M = 25 and L = 15.
Illustrative plots of our high-resolution descriptors for grunt

and growl vocalizations are shown in Fig. 3.

2.3. Feature selection

Feature selection is adopted here to improve classification by
removing redundant information in high-dimensionality spaces.
The sequential floating forward selection (SFFS) algorithm
[37,38], finds an optimum subset of features by appending features
to and discarding features from subsets of selected features and
has been adopted to guide the search, as the SFFS algorithm shows
below. A separation index based on distance and separability mea-
sures is considered in the SFFS algorithm as an objective function,
which evaluates the candidate set by returning a measure of their
‘goodness’. This SFFS scheme automatically selects the best feature
subset of high-resolution features related to fish vocalizations. The
size of the feature space is 375, which corresponds to the length of
the high-resolution features.

The SFFS algorithm adopted for feature selection:

1. Start with initialization:
i 0;
D0  {;};
Jð0Þ  0

2. Inclusion – select the most significant feature with respect to
Dk:
d0 ¼ arg maxdRDk

JðDk þ dÞ;
Dkþ1 ¼ Dk þ d0; k ¼ kþ 1



Fig. 2. The construction of the high-resolution descriptor.
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Fig. 3. Examples of high-resolution descriptors for fish vocalizations of (a) grunts
and (b) growls, respectively.
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3. Conditional exclusion – select the least significant feature in
Dk

1:
d00 ¼ arg maxd2Dk

JðDk � dÞ;
4. If JðDk � dÞ > JðDk�1Þ

Dk�1 ¼ Dk � d00; k ¼ k� 1
Go to 3

5. Else
Go to 2

6. End

Techniques for fusing multiple sources of evidence can be gen-
erally categorized into two types: fusion at the ‘‘feature level” and
fusion at the ‘‘decision level”. Feature-level fusion is performed by
merging the calculated features from each source into a cumulative
structure and feeding them to a classifier. In decision-level fusion,
each feature set is first classified independently, and the final deci-
sion is made by fusing the output from the classification processes
using the maximum, average, and product criteria. Here, we make
use of the feature-level fusion strategy since it often gives better
classification accuracy [39].

2.4. Classification

Detecting grunts and growls relating to the specific fish species,
is a binary classification problem, which is solved here by a least-
squares support vector machine (LS-SVM) [40,41] which has fast
convergence, high accuracy, and low computational complexity
[42]. LS-SVMs apply linear least squares criteria to theminimization
of the cost function instead of traditional quadratic programming.
Suppose that the training set consists of W feature vectors
xj 2 Rdðj ¼ 1;2; . . . ;WÞ from the d-dimensional feature space X,
namely, the space representing the features extracted from the
principal differential analysis. For each vector xj, we associate a tar-
get yj 2 f�1;þ1g. The linear SVM classification approach consists of
looking for a separation between the two cases in X by means of an
optimal hyperplane that maximizes the separating margin. In the
nonlinear case, they are first mapped with a kernel method in a

higher dimensional feature space, i.e.,UðXÞ 2 Rd0 ðd0 > dÞ. Themem-
bership decision rule is based on the function sign[f ðxÞ], where f ðxÞ
represents the discriminant function associated with the hyper-
plane in the transformed space and is defined as
1 Note that book-keeping should be done to avoid infinite loops.
f ðxÞ ¼ w� �UðxÞ ¼ b� ð3Þ

The optimal hyperplane defined by the weight vector w� 2 Rd0

and the bias b� 2 R minimizes a cost function that expresses a
combination of two criteria: margin maximization and error min-
imization. It is expressed as

Wðw; nÞ ¼ 1
2
jjwjj2 þ 1

2
C
XW
j¼1

nj ð4Þ

This cost function minimization is subject to the following
constraints:

yjðw �UðxjÞ þ bÞ ¼ 1� nj; j ¼ 1; . . . ;W

nj P 0;
ð5Þ

where nj represents the ‘slack’ variables introduced to account for
nonseparable data. The constant C represents a regularization
parameter [43].
3. Experiment

3.1. Experimental dataset

Audio data were collected passively off a private dock located on
the east coast of Quadra Island (lat/lon: 50.11159, �125.21757) in
June, 2012. Recordingsweremadewith anHTI-96-MINhydrophone
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Fig. 4. An illustrative plot of the histograms for grunt/growl data (June 15, 2012).

Table 1
Performance of classification given S proposed features derived from fish data for one
hour (e.g., June 15, 2012) (l: mean, r: standard deviation).

S Sensitivity (%) Specificity (%) Accuracy (%)
l� r l� r l� r

50 100 ± 3.44 90.21 ± 9.68 96.00 ± 3.44
100 100 ± 2.68 91.51 ± 11.32 96.57 ± 3.44
360 100 ± 3.40 90.67 ± 10.19 96.14 ± 3.40

Table 2
Performance of classification given S MFCC and LPCC features derived from fish data
for one hour (e.g., June 15, 2012) (l: mean, r: standard deviation).

Type of features S Sensitivity (%) Specificity (%) Accuracy (%)
l� r l� r l� r

MFCC 50 73.13 ± 4.44 91.05 ± 1.30 88.28 ± 1.14
100 73.93 ± 5.81 91.79 ± 1.09 88.36 ± 1.48
360 74.62 ± 2.52 91.91 ± 0.68 88.86 ± 1.12

LPCC 50 64.17 ± 4.48 92.48 ± 1.32 89.21 ± 1.56
100 66.79 ± 4.49 92.56 ± 1.14 89.56 ± 1.39
360 60.86 ± 5.64 89.14 ± 2.08 85.89 ± 1.78

Table 3
Performances of classification given S features derived from 24-h fish data for various
days (l: mean, r: standard deviation).

Day S Sensitivity (%) Specificity(%) Accuracy(%)
l� r l� r l� r

June 1, 2012 50 100 ± 1.17 79.58 ± 9.90 94.59 ± 1.98
100 100 ± 1.03 78.06 ± 8.12 94.68 ± 1.54
360 100 ± 1.22 77.43 ± 8.85 94.35 ± 1.78

June 7, 2012 50 100 ± 0.47 88.26 ± 8.56 98.54 ± 0.75
100 100 ± 0.39 85.03 ± 10.05 98.39 ± 0.78
360 100 ± 0.54 86.59 ± 8.54 98.32 ± 0.78

June 15, 2012 50 100 ± 0.93 67.69 ± 5.39 90.12 ± 1.82
100 100 ± 1.02 66.98 ± 4.88 89.95 ± 1.65
360 100 ± 0.88 68.19 ± 5.12 90.19 ± 1.60

June 22, 2012 50 100 ± 0.50 56.92 ± 8.03 94.80 ± 1.10
100 100 ± 0.46 57.77 ± 7.92 94.85 ± 1.05
360 100 ± 0.50 55.43 ± 7.29 94.48 ± 0.92

June 30, 2012 50 98.37 ± 1.20 60.12 ± 4.78 83.66 ± 1.88
100 98.40 ± 1.14 59.58 ± 3.97 83.39 ± 1.61
360 97.97 ± 1.17 58.03 ± 5.11 83.06 ± 1.82

2 For interpretation of color in Fig. 5, the reader is referred to the web version o
this article.
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(Wildlife Acoustics, MA, USA) fastened to the bottom of the seafloor,
froma depth ranging between 1.5 mand 7.5 m. Five dateswere cho-
sen in June for the analysis: June 1st, 7th, 15th, 22ndand30th. Visual
and audio analysis of spectrograms were conducted manually in
Audacity 2.0.6 (using Hamming window, 4096-point FFT, and 50%
overlap) by taking the first five minutes from each hour of the
24-h cycle, resulting in ten hours of annotated data. Sounds were
highlighted and grunt and growl segments were labeled, and start
and stop times of vocalizations were recorded, from which total
duration was computed. Labels and corresponding durations were
then exported as text files. The total number of grunt and growl seg-
ments are 4232 and 987, respectively.

3.2. Results and performance

The distributions of the grunts and growls are illustrated in
Fig. 4. The completely overlapping histograms of grunt and growl
data show the difficulties in grunt/growl identification from
time-domain data using merely thresholding.

The proposed scheme is evaluated in terms of classification
results for real recorded fish data. Results are obtained over 100
different runs in which the feature sets are split randomly by seg-
ment where 2/3 of the data are used for training and 1/3 of the data
are retained for testing. In each case, the feature set is normalized
to have zero mean and unit standard deviation. The classifier
parameters (i.e., the regularization parameter C and the RBF kernel
parameter r) are estimated using cross-validation. Parameters are
tuned in two steps. First, a modern global optimization technique,
coupled simulated annealing (CSA), determines suitable parame-
ters according to the mean-squared error (MSE) criterion [44]. Sec-
ond, these parameters are then given to a second optimization
procedure (simplex or grid search) to perform a fine-tuning step.
Table 1 shows the performance of the proposed scheme in terms
of sensitivity, specificity, and accuracy (see Eqs. (6a)–(6c)) given
feature set with size S, as derived from the fish data. Here, accuracy
(%) increases with S before levelling off.

Sensitivity ¼ TP
TPþ FP

ð6aÞ

Specificity ¼ TN
TNþ FN

ð6bÞ

Accuracy ¼ TPþ TN
ðTPþ FPÞ þ ðTNþ FNÞ ð6cÞ

where TP: True Positive, FP: False Positive, TN: True Negative, FN:
False Negative.

The performances with MFCC (mel frequency cepstral coeffi-
cients) [45] features are presented in Table 2. Under the same con-
dition, the sensitivity and accuracies are lower compared with the
proposed feature sets depicted in Table 1. Note that the following
parameters are used: MFCC window length = 20 ms (320 samples),
MFCC window overlapping = 50%. Similarly, the performances with
LPCC (linear prediction cepstral coefficients) [46] are presented in
Table 2 showing results similar to MFCC feature sets.

In Table 3, the results of sensitivity, specificity, and accuracy are
presented using 24-h data for various days in June, 2012. As we can
see, the mean accuracies (%) are high above 80% and vary with dif-
ferent days. The sensitivity is very high, while the specificity is rel-
atively low, which was due to the effect of high noise (mainly from
boats and P. notatus humming) from the original data used.

In Fig. 5, the results of average accuracy (%) are presented over
five days in June at a particular time (6 am) when the occurrence
of grunts/growls are high as depicted in red,2 indicating that high
performance can be achieved consistently by the proposed method.
The results of average accuracy (%) as shown in blue, are presented
for five different dates in June based on the 24-h fish data with
S = 50 when the occurrence of grunts/growls are high over a certain
period of time (5 am to 8 pm). Fig. 5 shows that high performance
can be achieved by the proposed method for the original noisy
f
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Table 4
Performances of classification with feature selection derived from 24-h fish data (l:
mean, r: standard deviation).

Day Selected Sensitivity (%) Specificity(%) Accuracy(%)
Feature set l� r l� r l� r

June 1, 2012 [7 14 35] 100 ± 1.01 76.89 ± 8.81 94.42 ± 1.56
June 7, 2012 [4 32 35] 100 ± 0.35 88.12 ± 8.16 98.81 ± 0.52
June 15, 2012 [6 11 36] 100 ± 1.24 66.29 ± 5.33 88.30 ± 1.89
June 22, 2012 [7 8 9] 100 ± 0.64 46.36 ± 6.71 93.11 ± 0.99
June 30, 2012 [33 36 43] 97.77 ± 1.15 51.13 ± 3.33 80.20 ± 1.53

Table 5
SNR(dB) vs call accuracy SNRr ¼ average SNR for Grunt segments

average SNR for Growl segments ; l : mean
� �

.

Day in 2012 SNR(Grunt) SNR(Growl) SNRr Accuracy (%)
l l l

June 1 4.87 1.74 2.79 94.42
June 7 6.63 3.21 2.06 98.81
June 15 10.87 2.77 3.92 88.30
June 22 5.10 1.65 3.09 93.11
June 30 8.15 1.54 5.29 80.20

Table 6
The temperature vs call accuracy with the constraint of specificity (l: mean).

Day in 2012 Temperature (�C) Accuracy (%) Specificity (%)
l l l

June 1 13.92 94.42 76.89
June 7 13.81 98.81 88.12
June 15 14.60 88.30 66.29
June 22 16.41 93.11 46.36
June 30 16.49 80.20 51.13
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data. Note that the number of vocalizations for growls and grunts
vary as their ratios are as follows: 84/428 (June 1), 65/854 (June 7),
215/588 (June 15), 158/1344 (June 22), 465/1018 (June 30).

The results of each optimal feature set (using SFFS) are shown in
Table 4. As we can see, the performance of the optimal feature sets
in 24 h is quite different (e.g., about 18% for June 7 and June 30).
This can be explained in terms of the Fisher Discrimination Ratio

(FDR) calculated as FDR ¼ ðl1�l2Þ2
r2
1þr2

2
, where li and ri are average sam-

ple mean and standard deviation, respectively, of the features for
each class label i. For instance, FDR of June 7 data is 0.1526
whereas FDR is 0.0392 for June 30 data, yielding much lower per-
formance (i.e., due to small FDR).
3.3. Statistical analysis

The one-sample, two-tailed t-tests were performed on the
results of the optimal feature set (using SFFS) in Table 4 and the
corresponding results are presented below:

June 1, 2012! {accuracy(t(99) = 507.79, p < 0.05, CI = [92.17–
92.89]); sensitivity(t(99) = 600.50, p < 0.05, CI = [96.17–
96.81]); specificity(t(99) = 80.46, p < 0.05, CI = [71.98–75.62])}

June 7, 2012! {accuracy(t(99) = 1564.20, p < 0.05, CI = [98.84–
99.09]); sensitivity(t(99) = 3127, p < 0.05, CI = [99.60–99.73]);
specificity(t(99) = 116.57, p < 0.05, CI = [88.45–91.51])}

June 15, 2012! {accuracy(t(99) = 513.82, p < 0.05, CI = [87.75–
88.43]); sensitivity(t(99) = 763.46, p < 0.05, CI = [96.33–96.83]);
specificity(t(99) = 142.37, p < 0.05, CI = [64.86–66.70])}

June 22, 2012! {accuracy(t(99) = 944.22, p < 0.05, CI = [92.97–
93.36]); sensitivity(t(99) = 1707, p < 0.05, CI = [98.67–98.90]);
specificity(t(99) = 72.92, p < 0.05, CI = [45.45–48.00])}

June 30, 2012! {accuracy(t(99) = 474.63, p < 0.05, CI = [78.21–
78.86]); sensitivity(t(99) = 665.06, p < 0.05, CI = [93.05–93.60]);
specificity(t(99) = 129.08, p < 0.05, CI = [48.47–49.98])}

where CI: confidence interval.
3.4. Relationship between signal-to-noise ratio (SNR) and call accuracy

The average SNR(dB) and the corresponding average call accu-
racy for five days in June are shown in Table 5. As we can see, the
higher the ratio of the average SNR between grunt and growl seg-
ments (SNRr), the lower the call accuracy. The SNRs of each frame
are computed for each frequency bin of the STFT (Short term Fourier
transform) using window length of 512 samples and FFT points of
512), when the so-called noise tracking algorithm estimates the
noise power assuming that the desired signal is ‘‘more non-
stationary” than the noise [47,48]. Then the SNR of each segment
is computed by averaging the SNRs of all frames of a segment.

We found, based on optimal curve fitting, the following rela-
tionship between SNRr and call accuracy, Að%Þ:

AðSNRrÞ ¼
a0 � SNR0

r ; SNRr < 2

a1 � SNR2
r þ a2 � SNRr þ a3; SNRr 2 ½2;17�

a4 � SNRr; SNRr > 17

8><
>: ð7Þ

where a0 ¼ 100; a1 ¼ �0:06535; a2 ¼ �5:251; a3 ¼ 109:8; a4 ¼ 0.

3.5. Relationship between temperature, call accuracy, and specificity

The average temperature (�C) and the corresponding average
call accuracy for five days in June are shown in Table 6. We found,
based on optimal curve fitting, that the relationship between tem-
perature, Tð	CÞ, and accuracy, Að%Þ, follows the power law [49] if
the specificity, Sp (%)P 60%, is defined as:

AðTÞ ¼ 104:04ðTÞ�1:80; T P 13:6 	C

102ðTÞ0; otherwise

(
ð8Þ

In the case of low specificity (<60%), the above representation of Eq.

(8) is scaled by the factor of Th
Sp

� �
with Th = 60 and the model of

accuracy (A) with respect to temperature (T) and specificity (Sp)
becomes:

AðT; SpÞ ¼ Th
Sp

� �
� 104:04ðTÞ�1:80; 8T ð9Þ
3.6. Comparison results

The comparison results are presented in Table 7 based on the
method in [15]. Here we can see the classification accuracies are
much lower (670%) than the proposed method (cp. Table 4). Since



Table 7
Comparison results for the 24-h fish data (l: mean, r: standard deviation).

Day in 2012 Sensitivity (%) Specificity(%) Accuracy(%)
l� r l� r l� r

June 1 100 ± 39.16 54.01 ± 49.64 52.58 ± 3.57
June 7 100 ± 25.68 80.94 ± 32.44 61.37 ± 6.66
June 15 100 ± 23.72 86.86 ± 29.93 65.17 ± 8.18
June 22 100 ± 36.81 65.14 ± 43.93 54.22 ± 4.47
June 30 100 ± 34.33 69.81 ± 43.02 57.21 ± 6.26

Table 8
Classification accuracies for the 24-h fish data (l: mean, r: standard deviation) with
MFCC/LPCC features.

Day in 2012 Accuracy (%) Accuracy (%)
ðl� rÞ ðl� rÞ
MFCC LPCC

June 1 88.90 ± 2.08 87.66 ± 1.93
June 7 93.11 ± 1.21 93.69 ± 0.86
June 15 86.28 ± 1.30 89.21 ± 1.36
June 22 88.27 ± 0.96 83.12 ± 0.96
June 30 80.06 ± 1.57 80.44 ± 1.44

Table 9
Comparison results for the 24-h fish data (l: mean, r: standard deviation) for the
HMM based method.

Day in 2012 Sensitivity (%) Specificity (%) Accuracy (%)
l� r l� r l� r

June 1 45.77 ± 19.65 88.67 ± 18.16 73.63 ± 11.33
June 7 56.08 ± 24.19 90.96 ± 19.31 83.89 ± 7.06
June 15 65.86 ± 25.48 90.57 ± 20.22 71.58 ± 9.64
June 22 70.04 ± 18.70 78.29 ± 25.65 68.03 ± 18.33
June 30 67.22 ± 17.39 61.65 ± 27.13 68.64 ± 15.58
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the method in [15] relies on the zero-crossings and the local maxi-
mas of the input time-domain signal, it is susceptible to noise and
distortion,which gives a lower classification accuracy. Also, the high
Table 10
Performances of classification predicted and the average temperatures for June, 2012 (l:

Day Sensitivity (%) Specificity (%) Accuracy (
l� r l� r l� r

June 1, 2012 100 ± 1.01 76.89 ± 8.81 94.42 ± 1.5
June 2, 2012 100 ± 0.92 78.29 ± 8.72 94.96 ± 1.4
June 3, 2012 100 ± 0.84 79.69 ± 8.64 95.51 ± 1.3
June 4, 2012 100 ± 0.76 81.10 ± 8.56 96.06 ± 1.1
June 5, 2012 100 ± 0.68 82.50 ± 8.48 96.61 ± 1.0
June 6, 2012 100 ± 0.59 83.90 ± 8.40 97.16 ± 0.9
June 7, 2012 100 ± 0.35 88.12 ± 8.16 98.81 ± 0.5
June 8, 2012 100 ± 0.43 86.71 ± 8.24 98.28 ± 0.6
June 9, 2012 100 ± 0.35 88.12 ± 8.16 98.81 ± 0.5
June 10, 2012 100 ± 0.46 85.39 ± 7.80 97.49 ± 0.6
June 11, 2012 100 ± 0.57 82.66 ± 7.45 96.18 ± 0.8
June 12, 2012 100 ± 0.68 79.93 ± 7.09 94.86 ± 1.0
June 13, 2012 100 ± 0.79 77.20 ± 6.74 93.55 ± 1.2
June 14, 2012 100 ± 0.90 74.47 ± 6.39 92.24 ± 1.3
June 15, 2012 100 ± 1.24 66.29 ± 5.33 88.30 ± 1.8
June 16, 2012 100 ± 1.12 69.01 ± 5.68 89.61 ± 1.7
June 17, 2012 100 ± 1.24 66.29 ± 5.33 88.30 ± 1.8
June 18, 2012 100 ± 1.16 63.79 ± 5.50 88.90 ± 1.7
June 19, 2012 100 ± 1.09 61.30 ± 5.67 89.50 ± 1.6
June 20, 2012 100 ± 1.01 58.81 ± 5.84 90.10 ± 1.5
June 21, 2012 100 ± 0.94 56.32 ± 6.02 90.70 ± 1.4
June 22, 2012 100 ± 0.64 46.36 ± 6.71 93.11 ± 0.9
June 23, 2012 100 ± 0.79 51.34 ± 6.36 91.90 ± 1.2
June 24, 2012 100 ± 0.35 48.85 ± 6.53 92.50 ± 1.1
June 25, 2012 100 ± 0.64 46.36 ± 6.71 93.11 ± 0.9
June 26, 2012 100 ± 0.70 46.95 ± 6.28 91.49 ± 1.0
June 27, 2012 99.44 ± 0.76 47.55 ± 5.86 89.88 ± 1.1
June 28, 2012 99.16 ± 0.83 48.14 ± 5.44 88.26 ± 1.1
June 29, 2012 98.88 ± 0.89 48.74 ± 5.02 86.65 ± 1.2
June 30, 2012 97.77 ± 1.15 51.13 ± 3.33 80.20 ± 1.5
variabilities in the performance shown in Table 4 indicate lower
consistency (i.e., reliability) compared with the proposed method.
We have compared the proposed method with that in [15], since
so far asweknow it provides thebest results among the few relevant
methods proposed for identification of fish vocalizations.

The classification accuracies for the MFCC/LPCC feature sets
+ SVM classifier are presented in Table 8. Note that the following
parameters are used: MFCC window length = 20 ms (320 samples),
number of MFCC features = 12, MFCC window overlapping = 50%,
number of LPCC features = 12.

Table 9 shows the performance of the simple and efficient hid-
den Markov model (HMM) method [50]. The HMM method uses
the first 12 MFCC with frames of 20 ms in length and one mixture
component per state. Under different conditions (such as temper-
ature, SNR), the proposed method achieves better performance
with higher classification accuracies than the HMM based method.
3.7. Cross-validation

The accuracy of the modeled relationship between temperature
and call accuracy as depicted in Eqs. (8) and (9), is cross-validated
in terms of normalized prediction error (%) between the actual and
estimated temperature values. The specificities, sensitivities, and
accuracies for all of June 2012 (listed in Table 10) havefirst been pre-
dicted based on the results shown in Table 4. The basic idea is to pre-
dict the values for a time interval (e.g., six days), givendata of certain
intervals (suchas every seventhday), basedon the concept of collab-
orative filtering [51] cum super-resolution to reconstruct the mesh
grid [52]. The corresponding algorithms which we developed, are
presented in Appendix A. Note also that the corresponding value
of the control parameter c ¼ 45, is chosen empirically, and the
parameter, iter, referring to thenumberof iterations, shouldbeequal
to the number of days to be predicted between two days. For exam-
ple, supposewewould like to predict five days between June 1, 2012
and June 7, 2012; we would then set iter = 5.
mean, r: standard deviation).

%) Actual (�C) Predicted (�C) Normalized error (%)
l l

6 13.92 14.02 0.71
3 13.95 13.98 0.21
0 14.18 13.94 1.69
7 14.23 13.90 2.31
4 14.10 13.85 1.77
1 13.92 13.81 0.79
2 13.81 13.73 0.57
5 13.57 13.72 1.10
2 13.74 13.68 0.43
9 13.29 13.78 3.68
6 13.62 13.89 1.98
3 14.10 13.99 0.78
0 14.24 14.10 0.98
7 14.38 14.21 1.18
9 14.60 14.56 0.27
1 14.60 14.44 1.09
9 14.60 14.56 0.27
7 14.71 14.51 1.35
6 14.82 14.45 2.49
5 15.66 14.56 7.02
4 16.19 14.86 8.21
9 16.41 16.32 0.54
1 16.65 15.53 6.72
0 16.67 15.91 4.55
9 16.57 16.32 1.50
5 16.73 16.36 1.50
2 17.14 16.41 4.25
9 17.20 16.46 4.30
6 16.56 16.52 0.24
3 16.49 16.79 1.81



Table 11
Classification results for the selected feature sets derived from 24-h fish data
(l : mean;r: standard deviation) with varying R (ratio of training and testing
datasets).

R Day Sensitivity (%) Specificity (%) Accuracy (%)
l� r l� r l� r

1:2 June 1, 2012 98.77 ± 1.11 68.17 ± 9.19 91.86 ± 1.14
June 7, 2012 100 ± 0.34 87.89 ± 7.51 98.58 ± 0.51
June 15, 2012 98.94 ± 1.06 62.86 ± 4.23 87.50 ± 1.06
June 22, 2012 99.70 ± 0.56 45.57 ± 5.42 93.08 ± 0.49
June 30, 2012 95.87 ± 1.20 47.19 ± 2.98 77.93 ± 0.95

1:3 June 1, 2012 99.15 ± 1.07 67.80 ± 10.46 91.98 ± 1.30
June 7, 2012 100 ± 0.34 86.34 ± 8.32 98.48 ± 0.59
June 15, 2012 99.22 ± 1.10 62.02 ± 4.23 87.25 ± 1.00
June 22, 2012 99.81 ± 0.60 46.22 ± 5.92 93.15 ± 0.45
June 30, 2012 96.74 ± 1.22 46.11 ± 3.13 77.48 ± 0.98

2:1 June 1, 2012 100 ± 1.01 76.89 ± 8.81 94.42 ± 1.56
June 7, 2012 100 ± 0.35 88.12 ± 8.16 98.81 ± 0.52
June 15, 2012 100 ± 1.24 66.29 ± 5.33 88.30 ± 1.89
June 22, 2012 100 ± 0.64 46.36 ± 6.71 93.11 ± 0.99
June 30, 2012 97.77 ± 1.15 51.13 ± 3.33 80.20 ± 1.53
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The temperature values are then estimated based on the
derived relations in Eqs. (8) and (9) using the predicted values in
the first three columns of Table 10. Table 10 shows the overall pre-
diction error is as low as 2.14%, which cross-validates the accura-
cies of the derived relations as well as the prediction scheme.
3.8. Classification results for different ratios of training and testing
datasets

The classification results of optimal feature sets (see Table 4)
are shown in Table 11 for different ratios of training and testing
datasets, R. The results with R = 1:2 and R = 1:3 are shown in
Table 11 for comparison; note that results corresponding with
R = 2:1 are used throughout this paper. The results appear to be
quite consistent for different ratios of training and testing datasets.
4. Conclusion

We have introduced a novel method to identify fish vocaliza-
tions using real recorded long term ocean acoustic data. The pro-
posed method, based on auditory analysis (high-resolution
descriptor) and SVM classification, demonstrates high classifica-
tion accuracy in identifying grunts and growls of P. notatus. It also
outperforms the comparative method using underwater acoustics.
Here, the relationship between classification accuracy and SNRs
has been shown. Further, the relationship between classification
accuracy and water temperature has also been derived and cross-
validated based on a context-aware prediction algorithm for
estimating the continuous data. Manually segmented data have
been adopted for method verification in order to determine the
impact of the high resolution features on classification accuracy,
independent of possible segmentation errors. A fully automated
segmentation method will be developed based on the proposed
features in the next step of our work, and investigations into
ontology-based annotation and feature enhancement will also be
performed. The presented method could be easily adapted for mul-
ticlass identification to include different types of vocalizations
from other species.
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Appendix A. Algorithms

The algorithms corresponding to our context-aware prediction
are presented below:

Algorithm for context-aware prediction

Require: X 2 Rm�n {input matrix}
Require: iter 2 R1�1 {number of iterations}
1. while j > iter þ 1 not satisfied do
2. Y  0ð2m�1Þ�n {zero matrix}
3. Yð1 : 2 : 2m� 1;1 : nÞ  X
4. while i > m� 1 not satisfied do
5. i iþ 1
6. Z  Yð2i� 1 : 2iþ 1;1 : nÞ
7. Call Code A: Z0  Z
8. Yð2i� 1 : 2iþ 1;1 : nÞ  Z0 2 R3�n

9. end while
10. Y  ½02m�1�1 Y�
11. while i > m� 1 not satisfied do
12. i iþ 1
13. Z  Yð2i� 1 : 2iþ 1;1 : nÞ
14. Call Code A: Z0  Z
15. Yð2i� 1 : 2iþ 1;1 : nÞ  Z0 2 R3�n

16. end while
17. Y  ½Y 04m�1�1�
18. while i > m� 1 not satisfied do
19. i iþ 1
20. Z  Yð2i� 1 : 2iþ 1;n : nþ 2Þ
21. Call Code A: Z0  Z
22. Yð2i� 1 : 2iþ 1;n : nþ 2Þ  Z0 2 R3�n

23. end while
24. X  Y
25. end while
26. ~X  X

Output: ~X {output matrix}
Algorithm for Code A

Require: Z 2 R3�3 {input matrix}
Require: c 2 R1�1 {control parameter}
1. y ½Zð1;2Þ Zð2;3Þ Zð3;2Þ Zð2;1Þ�
2. d1  j yð1Þ � yð3Þ j
3. d2  j yð4Þ � yð2Þ j
4. d3  d1
5. d4  d2
6. s ½d1 d2 d3 d4�
7. b expð�s=cÞ
8. y0  ðbð1Þyð1Þþbð2Þyð2Þþbð3Þyð3Þþbð4Þyð4ÞÞ

ðbð1Þþbð2Þþbð3Þþbð4ÞÞ
9. Z0  Z
9. Z0ð2;2Þ  y0
Output: Z0 2 R3�3 {output matrix}
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