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This paper presents a novel framework for monitoring fish sounds based on acoustic analysis of noisy big ocean
data. The proposed method involves multiresolution acoustic features (MRAF) extraction and RPCA (robust
principal component analysis) based feature selection for monitoring of natural fish sounds produced in situ by
the plainfin midshipman (Porichthys notatus); here, we investigate this fish's grunts, growls and groans. Both
local and contextual information are exploited byMRAF, while sparse components of the MRAF matrix obtained
throughRPCA is found to bemore robust to overlapping low-frequency spectral contents amongdifferent classes.
The simulation results obtained from real-recorded ocean data reveal the advantages of the proposed scheme for
monitoring underwater soundscapes and determining a variety of fish sounds in natural marine habitats.
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1. Introduction

Soundscapes offer information about our surroundings and environ-
ments, and include natural and man-made sounds (Pijanowski et al.,
2011). They can describe the biological communities that reside within,
including information on species interactions (Fine and Thorson, 2008),
communication (Tricas et al., 2006), and even abundance (Rountree
et al., 2006). Underwater soundscapes and the interactions of organisms
within them, including howmarine life benefits from and exploits them
are complex, and to date, poorly understood (Fay, 2009; Nedelec et al.,
2015).

Contrary to previous assumptions, we now know that marine
soundscapes are full of natural noise (Slabbekoorn et al., 2010),
including ‘biophony’, noise produced by animals (Krause, 2012). Fish
in particular produce a lot of noise, usually through contractingmuscles
or stridulation (rubbing of bones together; Kasumyan, 2008), and can
make up the “natural acoustic background” heard underwater
(Kasumyan, 2009; Slabbekoorn et al., 2010). Determiningwhich sounds
are created by which fish can be a daunting task as the number of fish
that produce sounds is at least 800, and likely much more (Rountree
et al., 2006; Kasumyan, 2008; Krause, 2012). When it comes to
biological sounds, establishing those produced by marine life is a
difficult process, as each sound must first be detected, identified, and
then categorized (e.g. type), thus assuming a basic knowledge of each
organism and its behavior in its natural environment. Such a process
is generally done manually, which proves difficult, costly, and very
time-intensive (Rountree et al., 2006).
).
Having an automatic classification system whereby fish sounds are
categorized by species and vocalization type would allow large acoustic
datasets to be analyzed over short timescales, andwould yield informa-
tion onmarine soundscape composition and condition. For example, by
identifying and classifying fish sounds, fish location (including
spawning sites), migration patterns, abundance and other parameters
could all be determined (Rountree et al., 2006).

The plainfin midshipman (Porichthys notatus) is a highly vocal
species of fish found along the Pacific northeast coast. Also known as
the ‘singing fish’, it is recognized for producing unique and varied
sounds (Bass et al., 1999; Cullis-Suzuki, 2015). The ‘hum’ is by far its
best understood call: associated with reproduction, the hum is emitted
by alpha males in search of females who will come and mate (Brantley
and Bass, 1994; Sisneros, 2009). The midshipman's other calls — the
grunt, grunt train, growl and groan — are in comparison not well
established. Unraveling the cause of vocalization emission and
determining how the calls relate to temporal, spatial, and frequency
features, would yield important insights into fish behavior and acoustic
communication. For example, if growls were emitted as agonistic
responses to predators, an increase in growls might signify a high
abundance of predators. Further, these findings would influence our
understanding of noise and how it might impact marine life and ocean
soundscapes. We investigate the plainfin midshipman fish in this
study, as it has proven to be an exceptional species for studies on wild
fish communication (McIver et al., 2014; Cullis-Suzuki, 2016).

Other studies on other organisms have implemented a variety of
automatic detection schemes for use on acoustic datasets. For example,
an identification scheme is proposed in Chesmore and Ohya (2004) for
Orthoptera species using temporal features based on shape of
waveform and duration between consecutive zero-crossings followed
by a multilayer perceptron (MLP) classifier. In Mellinger et al. (2011),
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a complex detection method is presented for humpback whales by
frequency contour tracing and by multiple parameter optimization. An
unsupervised classification method for bird song syllables has been
proposed in Hansson-Sandsten (2015), based on singular vectors of
multitaper spectrogram and the similarity measures of two syllables
using pairs of singular vectors. And finally, the study Starkhammar
and Hansson-Sandsten (2015) presents an evaluation of different
time-frequency representations for target detection applied to broad-
band echolocation signals of dolphins.

Herewe focus on designing a robust acoustic analysis framework for
big ocean data using robust principal component analysis (RPCA) and
multiresolution acoustic features (MRAF) to monitor fish sounds. PCA
uses the singular value decomposition (SVD) to find low rank represen-
tation of the data, while the robust version of PCA (RPCA) identifies a
low rank representation, random noise, and a set of outliers by repeat-
edly calculating the SVD and applying “thresholds” to the singular
values and error for each iteration (Guyon et al., 2012a; Bouwmans
and Zahzah, 2016). The RPCA plays a significant role in tackling the
key challenges involvedwith big data (Perez et al., 2015) byminimizing
false alarms, reducing seasonal variability and processing the data that
are not normally distributed. We further extract acoustic features
using multiple window sizes (both 1D and 2D) from the same input
data instead of the fixed window size (e.g. 20 ms). When multiple
window sizes are used, multiple sets of feature vectors are derived for
the same signal thereby increasing the number of examples. When
features are extracted with multiple window sizes, the variations
among the feature vectors are considerably increased, which will lead
to better acoustic models. This multiresolution acoustic feature
extraction technique can then be successfully used for building an
efficient underwater monitoring system that can detect a variety of
fish vocalizations automatically, thus providing information on the
type and extent of communication taking place in underwater
soundscapes.

Themain contributions of this paper can be stated as: 1)We address
the challenging task of fish soundmonitoring from single channel audio
when different fish vocalizations are overlapping. 2) The proposed
MRAF are constructed based on both local and contextual information.
3) The proposed RPCA based feature selection is taken into account to
reduce the non-distinctive features. 4) The advantage of the proposed
two-stage scheme is that it provides a high performance for the input
noisy raw data.

2. Method

The monitoring scheme we present is outlined in two steps: Firstly,
we partition the raw hydrophone recordings (which contain fish
sounds) into a number of segments. Secondly, we construct, select and
use a set of multiresolution features as input to the MSVM classifier to
track the types of fish vocalizations.

2.1. Data preprocessing

Manual spectrogramanalysis involved examining the first 5minutes
of each hour in a day (i.e., 5 min × 24 h) for each of the three dates in-
cluded in the analysis. The type and length offish calls for each introduc-
tory 5-m segments were determined in Audacity (see Cullis-Suzuki,
2015; Sattar et al., 2016 for further details).

2.2. Multiresolution acoustic features

We have introduced a new multiresolution acoustic features
(MRAF), which encodes the multi-resolution energy distributions
in the time-frequency plan based on the cochleagram representation
of an input signal. We incorporate a number of cochleagrams at dif-
ferent resolutions to design the MRAF features set. The cochleagram
with high resolution captures the local information, while the other
low resolution cochleagrams capture the contextual information at
different scales. To compute the cochleagram, we first pass an input
signal to a gammatone filter bank, where the impulse response of a
particular gammatone filter has an impulse response given by

h tð Þ ¼ t η−1ð Þe−2πB f c t cos 2π f ctð Þ t≥0ð Þ
¼ 0 t≤0ð Þ ð1Þ

where parameter η is the order of the filter, fc denotes the center
frequency while Bfc refers to the bandwidth given fc. The gammatone
filter function is used in models of the auditory periphery representing
critical-band filters where the center frequencies fc are uniformly
spaced on the equivalent rectangular bandwidth (ERB) scale. The
relation between Bfc and fc is given by

Bf c ¼ 1:019� ERB f cð Þ ¼ 1:019� 24:7 4:37� f c=1000þ 1ð Þ: ð2Þ

Then each response signal from the gammatone filter bank is
divided into 20 ms frames with a 10 ms frame shift; the cochleagram
is obtained by calculating the energy of each time frame at each
frequency channel. Each T-F unit in the cochleagram contains only
local information, which may not be sufficient to accommodate the
diversity in the ocean data. To compensate for this, the MRAF feature
set provides contextual information by including the energy distribu-
tion in the neighborhood of each T-F unit. The steps for computing
MRAF are as follows.

(1) Given input ocean data, compute the first 64-channel
cochleagram (CB1) followed by a log operation applied to each
T-F unit.

(2) Similarly, the second cochleagram (CB2) is computed with the
frame length of 200 ms and frame shift of 10 ms.

(3) The third cochleagram (CB3) is derived by averaging CB1 using a
rectangular window of size (5 × 5) including 5 frequency
channels and 5 time frames centered at a given T-F unit. If the
window goes beyond the given cochleagram, the outside units
take the value of zero (i.e. zero padding).

(4) The fourth cochleagram CB4 is computed in a similar way to
CB3, except that a rectangular window of size (11 × 11) is
used.

(5) Concatenate CB1–CB4 to generate a feature matrix F and
integrate it along the time frame to obtain a set of MRAF
features of dimension (256 × 1).

2.3. Feature selection

The feature selection is motivated by the idea of decomposition of
feature matrix into low-rank and sparse matrices based on the alternat-
ing direction method (ADM) (Yuan and Yang, 2009; Guyon et al.,
2012b). It leads to feature selection via RPCA (robust principal compo-
nent analysis) based on convex optimization. The RPCA is basically a
matrix decomposition problem where it is assumed that the input
feature matrix F is composed by a low-rank matrix, L, and a sparse
matrix, S. Then the recovery of L and S matrix can be accomplished by
solving the following convex programming problem:

minS;L γjjSjjl1 þ jjLjj� subject to Sþ L ¼ F ð3Þ

where || ⋅ ||l1 is the l1 norm, || ⋅ ||⁎ is the nuclear norm defined by the
sum of all singular values, and γ is a positive regularization
parameter.

The convex optimization problem in Eq. (3) can be solved by the
ADM approach (Kontogiorgis and Meyer, 1998), which is easily
implementable, computationally efficient using SVD (singular value
decomposition) (Larsen, n.d.), and based on augmented Lagrangian



Table 1
The number of fish vocalization segments used for performance evaluation.

Day Growl Groan Grunt

June 7, 2012 65 89 854
June 15, 2012 215 6 588
June 22, 2012 158 261 1344
Total 438 356 2786
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optimization (Glowinski and Le Tallec, 1989). The corresponding
augmented Lagrangian function is

L S; L; Zð Þ ¼ γjjSjjl1 þ jjLjj�−bZ; Sþ L−FNþ β
2
jjSþ L−Fjj2: ð4Þ

In Eq. (4), Z∈Rm�n is the multiplier of the linear constraint, bN is the
trace inner product for matrix bX ,YN=trace(XTY).

Then, the iterative scheme of ADM is

Skþ1∈argminS∈Rm�n L S; Lk; Zk
� �

Lkþ1∈argminL∈Rm�n L Skþ1; L; Zk
� �

Zkþ1 ¼ Zk−β Skþ1 þ Lkþ1−F
� � : ð5Þ

We set the regularization parameter γ= (tol/1-tol) and the param-
eter β=0.25nm/||F ||l1 (F∈Rn�m). Also, the value of tol=0.1 is setwithin
a suitable interval [0.03, 0.12] providing high-quality recovery (Yuan
and Yang, 2009), while the iteration is stopped whenever the relative

change RC=jjðS
kþ1 ;Lkþ1Þ−ðSk ;LkÞjjl2
jjðSk ;LkÞjjl2þ1b tol

, where || ⋅ ||l2 denotes the Euclidean norm.
Fig. 1. Example of various typical segments and their spec
2.4. MSVM classification

Separating grunts/growls/groans in non-stationary noise, related to
P. notatus, is a multiple classification based monitoring problem,
which is solved here by considering all data in one optimization formu-
lation based on the Crammer and Singer (CS) model (Crammer and
Singer, 2001) for a multiclass support vector machine (MSVM) which
has fast convergence and high accuracy (Dogan et al., 2011). In general,
aMSVMclassifier solves a d-class classification problem by constructing
decision functions of the form:

x↦ arg min
c∈ 1;…;df g

bwc;ϕ xð ÞNþ bcf g ð6Þ

given i.i.d. training data ((x1,y1),… ,(xl,yl))∈(X×{1,⋯ ,d})l. Here, ϕ : X→
H;ϕðxÞ ¼ kðx; �Þ , is a feature map into a reproducing kernel Hilbert
space H with corresponding kernel k, and w1⋯;wd∈H are class-wise
weight vectors. The CS machine is usually only defined for hypotheses
without bias terms, that is, for bc=0. This CS based MSVM classifier is
trained by solving the primal problem

min
wc

1
2

Xd

c¼1

bwc;wcNþ C
Xl

n¼1

ηn ð7Þ

subject to

∀n∈ 1;⋯; lf g;∀c∈ 1;⋯; df g5 ynf g : bwyn−wc;ϕ xnð ÞN≥1−ηn

and

∀n ∈ 1;⋯; lf g : ηn≥0

where η refers to the ‘slack’ variable. For learning structured data, CS's
method is usually the MSVM algorithm of choice taking all class
trograms: (a)–(b) grunt; (c)–(d) growl; (e)–(f) groan.



Fig. 2. Examples of cochleagrams (concatenated version: Channel indices [1:64] ∈CB1, [65:128] ∈ CB2, [129:192] ∈ CB3, [193:256] ∈ CB4) for the typical segments shown in Fig. 1;
(a) grunt, (b) growl, (c) groan.

105F. Sattar et al. / Ecological Informatics 34 (2016) 102–107
relations into account at once to solve a single optimization problem
with fewer slack variables.

3. Experiment

3.1. Experimental dataset

Audio data obtained for this analysis were collected passively off a
private dock on the east coast of Quadra Island, British Columbia,
using an HTI-96-MIN hydrophone (Wildlife Acoustics, MA, USA) se-
cured to the seafloor (as in Cullis-Suzuki, 2015; Sattar et al., 2016). All
data were collected in June 2012 and three dates were selected for
this paper: June 7th, 15th, and 22nd; all three fish calls—grunts, growls
and groans—were present during these three days. The three continu-
ous 24-hour signals have been adopted for performance evaluation.
Manual spectrogram analysis of fish sounds was carried out in Audacity
2.0.6 (see Cullis-Suzuki, 2015 and Sattar et al., 2016 for more details).
The resulting sound segments were also used for performance evalua-
tion as depicted in Table 1. Some example spectrograms showing typical
segments of different sound types are displayed in Fig. 1. The corre-
sponding concatenated versions of the cochleagrams are also illustrated
in Fig. 2.

3.2. Results and performance

The scatter plots of grunts, growls and groans are shown in Fig. 3.
The corresponding correlation coefficients between PC 1 (principal
component 1) and PC 2 (principal component 2) variables are
0.000024, 0.0098, and 0.00033 for the grunts, growls and groans, re-
spectively, emphasizing the challenges in classification.
Fig. 3. Scatter plots of PC 1-vs-PC 2:
The proposed scheme is evaluated in terms of classification results
for real recorded fish data. Results are obtained over 100 different
runs in which the feature sets are split randomly by segment where 2/
3 of the data are used for training and 1/3 of the data are retained for
testing. In each case, the feature set is normalized to have zero mean
and unit standard deviation. Here we have selected the default MSVM
parameter C (regularization parameter) and γ (bandwidth parameter)
of the radial Gaussian kernel k(x;x′)= exp(−γ | |x−x′ | | 2) as C=10
and γ=2 (Lauer, 2014).

Table 2 shows the performance of the proposed scheme in terms of
classification accuracy (see Eq. (8)) given a feature set of sizeM, as de-
rived from the fish data. The accuracy is defined as:

Accuracy ¼ TPþ TN
TPþ FPð Þ þ TNþ FNð Þ ð8Þ

where TP: True Positive, FP: False Positive, TN: True Negative, FN: False
Negative. Here, as we see, accuracy (%) increases withMwhereM value
is incremented by64 to take into account the effects by integrating a dif-
ferent 64-channel cochleagram at each time.

Note that the June 15 data sets produce considerably better results
than the other days. The possible reason can be attributed to its higher
average SNR (signal-to-noise ratio), which is ≈7 dB, compared to the
average SNRs for the June 7 and June 22 data sets, which are ≈5 dB
and ≈3.5 dB, respectively.

For illustration, the confusionmatrices of theMSVMclassification for
the three data sets (recorded on June 7, June 15, June 22) are presented
in Table 3. As we can see, the mean accuracies (%) are high between 85
and 95% and varywith different days or data sets. Note that the sensitiv-
ity and specificity are very high for grunts, while they are relatively
low for growls and groans due to the small number of data samples
(a) grunt; (b) growl; (c) groan.



Table 2
Percentage of average accuracy (classification rate) givenM features derived from24-hour
fish data for various days/data sets (μ: mean, σ: standard deviation).

Day M Accuracy(%)
μ±σ

June 7, 2012 64 87.19 ± 1.48
128 87.74 ± 1.41
192 88.80 ± 1.54
256 89.57 ± 1.51

June 15, 2012 64 94.03 ± 1.38
128 94.31 ± 1.01
192 95.02 ± 1.20
256 95.06 ± 1.03

June 22, 2012 64 84.50 ± 2.19
128 84.59 ± 1.12
192 85.34 ± 1.75
256 85.83 ± 1.33

Table 5
Comparison results with MFCC features and three data sets recorded on June 7, June 15,
June 22. (The classification accuracy as indicated in the right bottom corner (bold face)

for the respective confusion matrix is calculated as Sum of diagonal elements
Sum of all elements ).

Day Grunt Growl Groan Specificity

June 7, 2012 Grunt 252 2 1 0.98
Growl 2 5 16 0.21
Groan 7 8 10 0.40
Sensitivity 0.96 0.33 0.37 88.12

June 15, 2012 Grunt 157 15 1 0.90
Growl 10 56 3 0.81
Groan 1 0 0 0
Sensitivity 0.93 0.78 0 87.65

June 22, 2012 Grunt 367 16 14 0.92
Growl 14 18 17 0.36
Groan 12 22 49 0.59
Sensitivity 0.93 0.39 0.61 82.04
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(i.e. vocalizations) as well as low SNRs (average SNR of June 22 data;
grunt: 5.10 dB, growl: 1.65 dB, groan: 3.40 dB). The results of the pro-
posed method with the RPCA based feature selection are presented in
Table 4, and show improvement of the average classification accuracy
with smaller sized feature sets (c.f. Table 2) due to the selection of dis-
tinctive features. Note also that herewemake use of feature-level fusion
strategy (as performed by merging the calculated features from each
source, i.e. cochleagram, into a cumulative structure),which gives better
classification accuracy for 256 features with RPCA over the features
without RPCA.
Table 3
Confusion matrices for the three data sets recorded on June 7, June 15 and June 22. (The
classification accuracy as indicated in the right bottomcorner (bold face) for the respective

confusion matrix is calculated as Sum of diagonal elements
Sum of all elements ).

Day Grunt Growl Groan Specificity

June 7, 2012 Grunt 258 0 0 1
Growl 3 10 2 0.66
Groan 11 18 1 0.03
Sensitivity 0.95 0.35 0.5 88.78

June 15, 2012 Grunt 169 6 0 0.96
Growl 5 59 0 0.92
Groan 0 3 1 0.25
Sensitivity 0.97 0.86 1 94.24

June 22, 2012 Grunt 398 1 2 0.99
Growl 23 23 7 0.43
Groan 34 10 31 0.41
Sensitivity 0.87 0.67 0.77 85.44

Table 4
Percentage of average accuracy (classification rate) givenM features derived and selected
from 24-hour fish data for various days/data sets (μ: mean, σ: standard deviation).

Day M Accuracy (%)
μ±σ

June 7, 2012 64 93.66 ± 0.47
128 93.36 ± 1.44
192 93.36 ± 1.11
256 94.08 ± 0.89

June 15, 2012 64 96.71 ± 0.75
128 96.76 ± 0.84
192 96.76 ± 0.94
256 96.87 ± 0.77

June 22, 2012 64 90.46 ± 1.38
128 90.41 ± 0.87
192 89.99 ± 0.98
256 90.57 ± 1.25
3.3. Comparison results

Our results have been compared with the relevant method in
Chesmore and Ohya (2004), since to the best of our knowledge, the lat-
ter yields the best results among related studies in the literature.We de-
termined that the average classification accuracies for the three data
sets analyzed are much lower (≤50%) in Chesmore and Ohya (2004)
than the method we present. This could be attributable to the suscepti-
bility of the method in Chesmore and Ohya (2004) to noise and distor-
tions, which produces a lower classification accuracy; such a result
occurs due to its dependence on the zero-crossings and the local max-
imas of the input time-domain signal. It can be noted that the size of
these temporal features (i.e. zero-crossings and local maximas) are var-
ied and roughly related to the fundamental frequency and length of the
input signal.

The comparison results with MFCC (mel frequency ceptral
coefficients; Devi and Ravichandran, 2013) features are presented in
Table 5. The following parameters are used: MFCC window length =
20 ms (320 samples), number of MFCC features = 12, MFCC window
overlapping = 50%. The percentage of average classification accuracy
(μ±σ, μ: mean, σ: standard deviation) with the MFCC features for the
three data sets are 86.78 ± 1.32, 87.93 ± 1.69, 84.46 ± 1.11, for June
7th, June 15th and June 22nd, respectively.

4. Conclusion

This paper introduces a new method for long-term monitoring of
fish sounds using noisy ocean data. This framework is found to be
effective in classifying the three types of fish sounds analyzed herein,
a challenge due to the sounds' identical and overlapping spectral
contents. Experimental results have shown improved performance by
MRAF over MFCC features, and that this method outperforms the
comparative methods. The feature selection by sparse representations
of the MRAF further improved our results. Here we have proposed a
supervised approach; in the next step of our work, an unsupervised
approach will be developed for automatic grouping and labeling of
different fish vocalizations and species.
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